关键词:
混杂SiC颗粒
铝基复合材料
卷积神经网络
力学性能预测
相场裂纹扩展本构
摘要:
目的提高混杂SiC颗粒增强铝基复合材料的韧性,利用卷积神经网络预测其力学性能,以得到力学性能关键因素的影响规律。方法首先,通过实验得到了铝基复合材料的力学性能数据。其次,基于相场裂纹扩展本构,采用Python代码批量生成了不同构型参数的代表性体积单元,并利用Abaqus软件进行了有限元仿真(FEM)。通过代码实现了建模与仿真的一体化构建,利用得到的仿真数据,建立了神经网络模型,并实现了对复合材料力学性能的预测。建模前,对数据进行预处理和筛选,以提高数据质量并降低模型复杂度。最后,建立卷积神经网络,并优化模型的超参数。结果通过建立的神经网络模型,实现了对复合材料力学性能的有效预测。极限强度的预测误差保持在−7%~8.5%,能耗的预测误差保持在−5%~6%,预测精度较高。结论通过结合实验、仿真和卷积神经网络模型,可以更有效地预测混杂SiC颗粒增强铝基复合材料的力学性能,从而为材料设计和制备提供指导。