关键词:
变压器
鲸鱼优化算法
核主成分分析
动态自适应权重
初级知识获取共享算法
随机配置网络
摘要:
针对变压器故障诊断精确度低的问题,本文提出了一种多策略改进的鲸鱼优化算法(MIWOA)优化随机配置网络(SCN)的变压器故障诊断模型。首先,对变压器冗杂繁多的原始故障数据进行核主成分分析(KPCA)降维处理,降低无效特征的影响;其次,利用Tent混沌映射、动态自适应权重和初级知识获取共享算法对鲸鱼算法(WOA)进行改进,提高其优化能力;然后,在SCN中引入L2范数惩罚项进行正则化处理,并使用改进后的MIWOA算法对SCN惩罚项系数C进行寻优求解,提高SCN分类精度和泛化能力;最后,将降维的数据输入到MIWOA-SCN故障诊断模型中,提高模型收敛速度。结果表明,本文所提出的模型诊断精度为93.1%,与WOA-SCN、GWO-SCN和PSO-SCN诊断模型相比,分别提高了6.89%、9.48%、14.65%,证明MIWOA-SCN诊断模型在变压器故障诊断上具有良好的诊断效果。