关键词:
变压器套管
图像补全
憎水性识别
憎水性特征
纹理特征
概率神经网络
摘要:
提出基于多尺度特征和图像补全的变压器套管憎水性识别方法,及时、准确识别套管憎水性情况,避免电气故障发生,提高变压器运行的可靠性与电力系统的稳定性。利用BSCB算法补全变压器套管图像中的缺损区域,获取完整图像;利用LBP算法提取补全后图像的纹理特征向量,利用Canny算法对补全后图像实施分割处理,得到水珠与背景的分割图像,从分割图像中提取与套管憎水性密切相关的四个特征量来描述套管憎水性特征;构建概率神经网络模型,将获取的纹理特征向量与套管憎水性特征量作为输入项,输入至训练好的概率神经网络模型,其输出结果即是变压器套管憎水性最终的识别结果。实验表明,该方法可以精准识别变压器套管憎水性级别,当概率神经网络模型中的平滑因子设置为0.7时,识别效果最好。