关键词:
变压器油气体含量
卷积神经网络
池化
故障诊断
摘要:
变压器作为变电站的主要电气设备,其智能化程度直接决定了智能变电站的发展程度,是电力系统中关系国民生产生活的重要环节。采集变压器油中溶解气体的含量及类型,通过建立卷积神经网络模型确定变压器的故障类型。在卷积神经网络算法原理的基础上,利用Java编程构建模型,将一维卷积神经网络应用到变压器故障诊断中,以变压器油中溶解的5种气体含量值作为输入向量,变压器的6种状态对应的编码值作为输出向量,并对网络中的池化层进行改进。在模型建立过程中讨论了卷积核的大小、数量、样本长度对模型精度的影响,并通过优选函数的方法确定激活函数。实验表明,将该方法生成的网络应用于变压器故障诊断,可为合理诊断变压器故障提供有价值的参考。