关键词:
变压器
故障诊断
改进蜣螂算法
双向长短时记忆网络
KPCA
摘要:
为了保证油浸式变压器故障诊断的可靠性,提出了一种基于多策略改进蜣螂算法(multi-strategyimproved dung beetle optimizer, MIDBO)优化双向长短时记忆网络(bi-directional long short-term memory, BiLSTM)的变压器故障诊断方法。由于蜣螂算法存在全局搜索能力较差、容易陷入局部最优解的缺点,首先通过Bernoulli混沌映射、引入自适应因子和Levy飞行策略融合动态权重系数进行改进,并对其性能进行评估。然后针对Bi LSTM的诸多超参数利用MIDBO进行优化,形成MIDBO-Bi LSTM故障诊断模型。通过核主成分分析(kernel principal component analysis,KPCA)提取特征值,进而深入分析特征值与故障类型之间的关联性,提高模型的收敛速度。最终实验结果表明所提出的MIDBO-Bi LSTM变压器故障诊断方法准确率高、泛化能力强。其准确率高达94.67%,适用于变压器的故障诊断。