关键词:
变压器振动
绕组松动
降噪自动编码器
格拉姆角场(GAF)
深度残差网络
摘要:
针对变压器绕组松动故障诊断中特征量难以选取,依赖人工经验的问题,提出了一种基于自动编码器降噪,格拉姆角场(GAF)和深度残差网络(ResNet)进行识别的变压器绕组松动诊断方法。该方法直接从GAF图像中自动学习有效的故障特征,不需要手动提取特征量。首先,将振动信号经过自动编码器进行降噪,获得信噪比更高的振动信号。然后,采用GAF方法将振动信号转化为二维图像,生成图像数据集,在此基础上训练ResNet,构建适用于变压器绕组松动故障分类识别的网络模型。最后,搭建变压器绕组松动故障试验平台,采集绕组在不同松动和试验电流下的振动信号并进行分析。试验结果表明,所提诊断方法对变压器绕组松动识别准确率达95%以上,能够有效识别松动相和松动程度,适用于变压器绕组松动故障的识别和诊断。