关键词:
变压器
故障诊断
Fisher-Score核主成分分析
蛇优化算法
最小二乘支持向量机
摘要:
针对变压器故障的特点,提出一种Fisher-Score核主成分分析(fisher-score kernel principle component analysis,FKPCA)与改进的蛇优化算法(improved snake optimization,ISO)优化最小二乘支持向量机(LSSVM)的变压器故障诊断方法。该方法主要是将溶解气体分析技术与无编码比值相结合得到21维变压器的故障特征,将其作为LSSVM模型的输入,输出变压器故障诊断的类型。采用自适应因子和黄金莱维策略来对蛇优化(snake optimization,SO)算法进行改进,利用ISO算法对LSSVM模型的参数进行联合寻优,使变压器故障诊断精度最优;然后,利用FKPCA对21维变压器故障特征数据进行重新选择降维处理,加快了模型的收敛速度。结果表明该模型具有91.67%的诊断精确度,同SO-LSSVM、SSA-LSSVM、WOA-LSSVM、GWO-LSSVM故障诊断模型相比,分别提高了4.45%、6.11%、8.34%、11.67%。因此,该故障诊断方法可以提高变压器的故障诊断能力。