关键词:
变压器
故障识别
格拉姆角场
深度学习
深度压缩模型
摘要:
提出了一种基于格拉姆角场和深度压缩模型的变压器故障识别方法。针对故障样本稀缺和VGG(visual geometry group)网络一般不能直接读取一维数据的问题,首先提出了格拉姆角场变换方法将一维故障样本转换为三维特征图像,并使用数据增强方法进行样本扩充,使其满足故障识别方法的输入需求。进一步,针对VGG网络层数深、参数多以及结构复杂的缺点,提出了一种改进深度压缩模型。使用NiNNet(network in network)网络的全局平均池化层替换VGG网络的全连接层,减少VGG末端网络的层数和参数规模;提出了一种结构化剪枝方法对VGG网络的多层卷积核进行剪枝,进一步减少VGG前端网络的参数规模,实现网络的深度压缩。由变压器油色谱故障数据上开展的数值实验和性能评估结果表明,所提方法在不损失变压器故障识别结果精度的前提下实现了VGG网络的深度压缩和结构简化:此外,深度压缩模型能够有效降低模型存储所需的存储空间和运行所需的计算资源,使其能够应用于体积小、功耗低的边缘计算平台。