关键词:
本征正交分解
深度神经网络
绕组稳态温升
快速计算
降阶模型
摘要:
为解决油浸式变压器绕组稳态温升计算耗时久的问题,该文提出一种基于POD-DNN降阶模型的快速计算方法。首先,通过绕组稳态温升全阶模型构建快照矩阵,并基于本征正交分解(proper orthogonal decomposition,POD)获得物理系统的模态及模态系数。然后,建立工况参数与模态系数间的深度神经网络(deep neural networks,DNN)代理模型,解决POD方法中非线性项求解效率低和控制方程依赖强的局限,同时设计网络正则化策略,避免小样本下模型过拟合。最后,将DNN代理模型预测的模态系数与对应的POD模态线性加权,重构绕组温度场。经验证,POD-DNN求解的绕组温升结果与Fluent仿真和试验测量高度一致,计算效率相较于全阶模型和Fluent仿真分别提升了247478倍和23056倍,该算法能够为变压器的在线监测、运行维护和绝缘设计提供技术支撑。