关键词:
变压器
故障诊断
多维尺度缩放法
樽海鞘算法
支持向量机
算法改进
摘要:
为了提高变压器故障诊断精度,提出一种基于改进SSA优化MDS-SVM的变压器故障诊断方法.首先,利用多维尺度缩放法(multiple dimensional scaling,MDS)对20维变压器故障特征数据进行特征提取,降低高维数据存在的稀疏性和多重共线性;其次,引入樽海鞘群算法(salp swarm algorithm,SSA),并对该算法进行改进,增置信赖机制和突变,以提高算法的收敛速度和收敛能力;然后,通过与原始SSA、PSO、GWO和β-GWO算法进行寻优测试对比来验证改进SSA算法的优越性;最后,使用改进SSA算法对MDS降低维数和支持向量机(support vector machine,SVM)的参数联合寻优,构建新的故障诊断模型.分析并比较其与常用算法优化的SVM故障诊断模型、BP神经网络(back propagation neural network,BPNN)、K最近邻(K-nearest neighbor,KNN)以及随机森林(random forest,RF)故障诊断模型的故障诊断精确度,结果表明,基于改进SSA的MDS-SVM变压器故障诊断模型的精确度高于其他算法模型,且泛化能力较强.