关键词:
电力变压器
声纹
卷积神经网络
多特征融合
绕组松动
摘要:
绕组松动故障是变压器安全稳定运行中的巨大隐患,目前尚缺乏有效的在线诊断方法。变压器运行产生的声音信号蕴含着大量反映设备状态的有效信息,依据声音信号的特征图谱对松动故障实现在线诊断。首先,构建4种特征图谱,包括通过格拉米角场构建时域特征图谱、通过傅里叶变化和马尔可夫变迁场构建频域特征图谱、通过小波变换构建时频域特征图谱、通过递归分析构建混沌特征图谱;然后,建立轻量化卷积神经网络模型,以4种特征图谱作为输入,通过卷积、池化等一系列操作提取有效故障特征;最后,利用分类器直接输出绕组松动的故障程度。实验结果表明,所提方法对25%、50%、75%及100%的松动程度均能实现可靠诊断,平均准确率为99.6%,对最为轻微的25%松动程度,准确率仍达98%。与仅采用单一特征的诊断相比,所提方法的准确率提升了9.9%;与采用AlexNet、MobileNetV2、GoogleNet、ShuffleNet、ResNet等经典神经网络的诊断相比,所提方法的准确率提升了18.1%,同时训练速度提高37%,占用内存减少20%。