关键词:
变压器
油中溶解气体
ADASYN算法
鲸鱼算法
核极限学习机
摘要:
针对不平衡数据对变压器故障诊断模型辨识精度的影响,提出一种基于自适应综合过采样(ADAptive SYNthetic,ADASYN)与改进鲸鱼算法优化核极限学习机的变压器故障诊断模型。首先,利用ADASYN算法优化变压器故障数据均衡化处理,解决变压器故障数据集类间不平衡给模型带来的偏倚问题。其次,通过多策略组合改进了鲸鱼优化算法(improved whale optimization algorithm,IWOA)的搜索速度、收敛能力和局部极值的逃逸能力。最后,改进鲸鱼算法对核极限学习机(kernel based extreme learning machine,KELM)正则化系数和核函数参数寻优,构建改进鲸鱼算法优化核极限学习机(IWOA-KELM)故障诊断模型。将模型应用于变压器故障诊断领域,用该模型与粒子群算法核极限学习机模型(PSO-KELM)、灰狼算法优化核极限学习机模型(GWO-KELM)和鲸鱼算法核极限学习机模型(WOA-KELM)的诊断精度对比,分别提升14.17%、12.5%和8.34%,这证明了所提故障诊断模型具有更高的精度和泛化能力。