关键词:
电力变压器
知识图谱
深度学习
ALBERT
辅助决策
摘要:
当前电网数字化转型升级,且电力变压器智能健康管理技术快速发展,而在运维过程中存在信息关联性弱以及决策生成效率低的问题。目前,知识图谱在航天器运维等其他工业领域已有应用,知识查询效率显著提升。电力变压器运维领域鲜有知识图谱构建相关文献,且针对电力变压器运维领域公开数据较少、运维知识难以被有效挖掘的问题,该文提出一种基于ALBERT的电力变压器运维知识图谱构建方法。首先获取电力变压器领域公开文献,并使用正则匹配的样本生成方法对电力系统事故调查报告等半结构化语料进行样本增强,构建电力变压器运维领域的训练数据集;然后应用ALBERT-BiLSTM-CRF深度学习算法从电力变压器相关文献与事故调查报告中抽取了电力变压器运维实体,并将此算法与传统深度学习算法进行对比,验证了此方法的优越性;接着,利用融入了ALBERT和注意力机制的ALBERT-BiLSTM-Attention深度学习算法对电力变压器运维实体进行关系抽取,相较于其他深度学习算法,此算法在电力变压器运维领域文本中具有更好的表现;最后使用Neo4j图数据库对知识图谱进行可视化呈现,并实现了基于电力变压器运维知识图谱的辅助决策功能。