关键词:
电力变压器
油中溶解气体分析
故障诊断
关联规则
深度学习
摘要:
变压器的正常运转是电力系统可靠供电的基础,它的早期故障检测一直是研究的热点方向。随着大数据和人工智能的兴起,变压器的多种日常运行监测数据得以更有效的利用。早期故障检测方法容易误判,对故障部位及故障程度的识别也比较模糊。因此,为了获得更高的故障预测及诊断精度,文中提出了一种关联规则输入的变压器深度学习故障辨识方法。首先应用Apriori算法挖掘特征量集中的高频项,计算其与故障类型的置信度,找到强置信度规则。然后将置信度与油中溶解气体浓度一起作为输入应用到深度神经网络DNN(deep neural networks)模型中,通过正向传播、反向梯度更新进行训练,以确定变压器的故障类型。最终实例证明基于关联规则的故障检测模型具有更高的精度和更快的响应速度,相较于未输入关联规则的模型准确度至少提升了5%。