关键词:
变压器
绕组松动
振动信号
变分模态分解
排列熵
天牛须搜索
摘要:
随着电力系统中变压器容量的不断增加,变压器绕组松动缺陷引起的影响也愈发严重,故需进行故障诊断。针对利用振动信号进行变压器绕组松动缺陷诊断问题,提出基于变分模态分解(VMD)排列熵(PE)的变压器振动信号特征提取方法与天牛须搜索(BAS)优化支持向量机(SVM)的变压器绕组松动缺陷诊断方法。首先对一台实际110 kV变压器设置不同松动状态,采集绕组正常与不同松动程度状态下振动信号;其次,采用变分模态分解结合排列熵进行变压器绕组松动缺陷特征提取;再次,采用天牛须搜索优化支持向量机算法进行绕组松动状态模式识别。最后将该方法与传统方法进行对比,结果表明,VMD分解效果优于当前主要采用的经验模态分解,排列熵量化故障特征效果优于多尺度排列熵、近似熵等时间序列复杂度计算指标,BAS⁃SVM运算时间及诊断正确率优于网格搜索优化SVM、遗传算法优化SVM等优化算法;所提方法在所进行的60%~110%额定电流状态试验下变压器绕组松动故障诊断准确率达到98.7%以上。