关键词:
油中溶解气体
模态分解
卷积神经网络
门控循环网络
预测
摘要:
为防止电力变压器出现运维不足或者过度运维的情况,对其运行状态进行评估和潜在性故障进行预测具有重要意义。DGA技术是对变压器状态进行评估的有效方法,而变压器的机械振动、油温等原因会导致油中溶解气体信号呈非线性趋势,非稳定特性;致使预测难度增加,甚至日常测量气体数据缺失导致以DGA技术为主的在线监测系统无法监测变压器状态。针对以上问题,本文应用EEMD分解气体浓度信号集,而EEMD产生的高频本征模态函数会增加预测难度和影响预测精度,使用WPD进一步将子信号模态函数分解,针对过去机器学习无法分离和解析浓度信号间时间关联性和蕴藏特性的难题,本文提出了混合式CNN⁃GRUT预测模型,分离气体浓度子信号当中的蕴藏特性,深度解析气体浓度子信号集当中的时间关联特性,迭代子信号重组得到油中溶解气体浓度信号预测值。实验结果得出,提出的CMD⁃CNN⁃GRUT预测模型相较于BP、Elman等混合预测模型,CMD⁃CNN⁃GRUT的预测平均绝对误差减少2244%和309%,并且结合实验证明了所提出的预测模型的有效性。