关键词:
3D printing
dental ceramics
lithium disilicate
slurry proportion
stereo lithography apparatus
摘要:
Objective This study aims to use 3D printing technology based on the principle of stereo lithography apparatus (SLA) to shape dental lithium disilicate ceramics and study the effects of different slurry proportions on the microstructure and properties of heat-treated samples. Methods The experimental group comprised lithium disilicate ceramics manufactured through SLA 3D printing, and the control group comprised lithium disilicate ceramics (IPS *** CAD) fabricated through commercial milling. An array of different particle sizes of lithium disilicate ceramic powder materials (nano and micron) was selected for mixing with photocurable acrylate resin. The proportion of experimental raw materials was adjusted to prepare five groups of ceramic slurries for 3D printing (Groups S1-S5) on the basis of rheological properties, stability, and other factors. Printing, debonding, and sintering were conducted on the experimental group with the optimal ratio, followed by measurements of microstructure, crystallographic information, shrinkage, and mechanical properties. Results Five groups of lithium disilicate ceramic slurries were prepared, of which two groups with high solid content (75%) (Groups S2 and S3) were selected for 3D printing. X-ray diffraction and scanning electron microscopy results showed that lithium disilicate was the main crystalline phase in Groups S2 and S3, and its microstructure was slender, uniform, and compact. The average grain sizes of Groups S2 and S3 were (559.79±84.58) nm and (388.26±61.49) nm, respectively (P<0.05). Energy spectroscopy revealed that the samples in the two groups contained a high proportion of Si and O elements. After heat treatment, the shrinkage rate of the two groups of ceramic samples was 18.00%-20.71%. Test results revealed no statistical difference in all mechanical properties between Groups S2 and S3 (P>0.05). The flexural strengths of Groups S2 and S3 were (231.79±21.71) MPa and (214.86±46.64) MPa, respectively, which were l