关键词:
Artificial intelligence
Education
Healthcare robots
Robot design
Robotics
Humanoid robots
摘要:
Purpose The following paper is a "Q&A interview" conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding her pioneering efforts and the challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Maja Mataric, Chan Soon-Shiong Distinguished Professor in the Computer Science Department, Neuroscience Program, and the Department of Pediatrics at the University of Southern California, founding director of the USC Robotics and Autonomous Systems Center (RASC), co-director of the USC Robotics Research Lab and Vice Dean for Research in the USC Viterbi School of Engineering. In this interview, Mataric shares her personal and business perspectives on socially assistive robotics. Findings Mataric received her PhD in Computer Science and Artificial Intelligence from MIT in 1994, MS in Computer Science from MIT in 1990 and BS in Computer Science from the University of Kansas in 1987. Inspired by the vast potential for affordable human-centered technologies, she went on to found and direct the Interaction Lab, initially at Brandeis University and then at the University of Southern California. Her lab works on developing human-robot non-physical interaction algorithms for supporting desirable behavior change;she has worked with a variety of beneficiary user populations, including children with autism, elderly with Alzheimer's, stroke survivors and teens at risk for Type 2 diabetes, among others. Originality/value Mataric is a pioneer of the field of socially assistive robotics (SAR) with the goal of improving user health and wellness, communication, learning and autonomy. SAR uses interdisciplinary methods from computer science and engineering as well as cognitive science, social science and human studies evaluation, to endow robots with the ability