关键词:
pedicle screws
robotics
spine surgery
摘要:
Although it is impossible to predict the future, we can learn from trends of the past, and from the activities of our surgical colleagues. Spine robotics has been available in the United States since 2004 with the Mazor SpineAssist system (Mazor Robotics, Caesarea, Israel). SpineAssist did not, however, see significant use until 2011 with a handful of installations, to still under 100 installed by 2015. The number of procedures per system has increased steadily, however, implying greater utilization and acceptance of spine robots in the operating room (OR), and by 2015, over 3000 procedures were performed annually in the United States. Perhaps this trend will mimic the Intuitive Surgical robot (Intuitive Surgical, Inc., Sunnyvale, CA) used for prostate and ob-gyn surgeries, with 700,000 procedures executed in 2015.
It is also likely that both market and training trends will push medical systems towards the use of robotics in spine surgery. Already, there is a push for commoditization of spinal procedures, with the expectation of more complex procedures to be performed by more spine surgeons in more varied hospital settings. In parallel, residency work hour restrictions provide less and less opportunity for indepth spine procedural training. Thus, less-trained spine surgeons are expected to do more and more, especially in physician-based settings. Robotics could allow for increased safety even with increased complexity of surgery, bringing such cases into the capability of less experienced surgeons. The robotics industry is expected to increase from $4 billion in 2016 to $6.8 billion in 2021, and spine surgery robotics will likely follow that growth rate.
Currently, spine robots simply act as guides to help position tools in an ideal position or trajectory. This allows for accurate placement of pedicle screws; however, tremendous opportunity exists for the future. Examples might include the use of robots that are passive but provide "no-fly zones" around protected