Sun Yat Sen Univ Sch Informat Sci & Technol Guangzhou 510006 Guangdong Peoples R ChinaHong Kong Polytech Univ Dept Comp Kowloon Hong Kong Peoples R China
摘要:
This paper proposes a zeroing neural-dynamics (ZND) approach as well as its associated model for solving the real-time kinematic control problem of parallel robot manipulators. Unlike existing works relying on the plausibly impractical assumption that neural network models are free of external disturbances, the proposed model features the suppression of multiple disturbances in addition to its nonlinear processing and control. Theoretical analyses prove that the ZND approach and its associated model inherently possess robustness. In addition, by using an appropriate activation function, the rapid convergence performance of the corresponding ZND model is further achieved. Simulation studies and comprehensive comparisons substantiate the effectiveness, robustness and superiority of the proposed ZND approach as well as its associated model for solving the real-time kinematic control problem of parallel robot manipulators against the superposition of multiple disturbances. Moreover, results of extensive tests verify that the processing of the ZND model can be accelerated by using an appropriate activation function. (c) 2017 Elsevier B.V. All rights reserved.