关键词:
Machine intelligence
Artificial intelligence
Neural networks
摘要:
Purpose For efficient trajectory control of industrial robots, a cumbersome computation for inverse kinematics and inverse dynamics is needed, which is usually developed using spatial transformation using Denavit-Hartenberg principle and Lagrangian or Newton-Euler methods, respectively. The model is highly non-linear and needs to deal with uncertainties because of lack of accurate measurement of mechanical parameters, noise and non-inclusion of joint friction, which results in some inaccuracies in predicting accurate torque trajectories. To get a guaranteed closed form solution, the robot designers normally follow Pieper's recommendation and compromise with the mechanical design. While this may be acceptable for the industrial robots where the aesthetic look is not that important, it is not for humanoid and social robots. To help solve this problem, this study aims to propose an alternative machine learning-based computational approach based on a multi-gated sequence model for finding appropriate mapping between Cartesian space to joint space and motion space to joint torque space. Design/methodology/approach First, the authors generate sufficient data required for the sequence model, using forward kinematics and forward dynamics by running N number of nested loops, where N is the number of joints of the robot. Subsequently, to develop a learning-based model based on sequence analysis, the authors propose to use long short-term memory (LSTM) and hence, train an LSTM model, the architecture details of which have been discussed in the paper. To make LSTM learning algorithms perform efficiently, the authors need to detect and eliminate redundant features from the data set, which the authors propose to do using an elegant statistical tool called Pearson coefficient. Findings To validate the proposed model, the authors have performed rigorous experiments using both hardware and simulation robots (Baxter/Anukul robot) available in their laboratory and KUKA simulation robo