关键词:
双馈风力发电机
自适应容积卡尔曼滤波
动态状态估计
摘要:
对风电机组进行状态监测,可以研究风电机组运行规律,对含风电电力系统的分析与控制具有重要意义。提出一种基于自适应容积卡尔曼滤波(adaptive cubature Kalman filter,ACKF)的双馈风力发电机(doubly fed induction generator,DFIG)动态状态估计方法。根据容积数值积分的原则,构建具有相同权值的容积点,经过DFIG非线性状态方程的传递,计算状态变量和误差协方差阵的预测值,利用量测量进行滤波修正,同时引入自适应技术,通过Sage-Husa估值器来实时估计过程噪声协方差,以建立DFIG动态状态估计模型。在含DFIG的改进四机两区系统进行算例分析,并与扩展卡尔曼滤波(extended Kalman filter,EKF)、容积卡尔曼滤波(cubature Kalman filter,CKF)进行性能比较,验证了所提状态估计算法的准确性和鲁棒性。