关键词:
风力发电机
门控线性单元
Transformer模型
对抗训练
故障分类
摘要:
风力发电机故障分类的复杂性和多样性严重影响风能发电效率,传统的人工方法效率低下,准确率较低,已有的深度学习模型在真实环境中易受数据噪声干扰而表现不佳。为提升风力发电机故障分类模型在真实环境下的分类性能与鲁棒性,提出一种基于对抗训练与Transformer的故障分类方法。首先通过引入一维卷积与门控线性单元(GLU)增强注意力机制对局部特征的学习,保留易被忽略的局部信息,提升模型对于局部特征的敏感度。其次结合限制因子约束对抗样本,提高对抗样本产生的准确性。最后在消除错误样本的同时反馈生成过程,使其具备更好的抗干扰能力。实验结果表明,与5种常用的分类模型相比,所提模型分类性能平均提升7.76%,与真实结果之间的误差最小。局部增强的注意力机制和所提的对抗训练方法分别使模型的分类性能平均提升4.51%、4.95%。所提模型在10%~20%噪声环境中仍保持较好性能,增强了其在真实环境中的稳定性。该方法在提高分类准确率的同时使模型具备更强的泛化能力,对于提升风力发电机故障分类性能与鲁棒性具有重要意义。