关键词:
ChatGLM2-6B
ERNIE
FAISS向量数据库
指令微调
提示学习
摘要:
随着电力系统规模的不断增长,在日常财务处理中产生了大量重复和复杂的工作内容,传统的财务知识组织和管理方式已经无法满足当前电力系统的需要。基于此,本文提出一种基于大规模语言模型ChatGLM2-6B构建财务事理图谱的方法,用于规范化财务管理和项目管理流程,辅助财务决策。首先,通过指令微调和提示学习等方式优化ChatGLM2-6B模型,使其分别从合同和票据数据中抽取出事件和事件关系对;其次,通过FAISS向量数据库将事件关系对保存为本地知识库,并训练一个FAISS-ERNIE相似度评估模型提升模型的知识检索能力,实现财务数据的智能问答;最后,利用层次聚类算法泛化事件关系对,分别得到合同事理图谱和票据事理图谱,用于对实时的财务操作进行规范化指引和监督,实现财务执行的透明化。实验结果表明,本文提出的方法在事件抽取、事件关系对抽取以及相似度检索等方面均展现出优异的性能,所构建的合同和票据事理图谱对于电力企业的财务管理具有重要意义,有助于提升企业管理水平。