关键词:
多传感器信息融合
卷积神经网络
有效通道注意力机制
液压系统
故障诊断
摘要:
针对液压信号复杂且难以准确识别的特点,提出一种基于多传感器信息融合的有效通道注意力卷积神经网络模型,分别对液压系统中的液压泵和蓄能器进行故障诊断。该模型采用并行网络结构,针对流量和压力传感器在数量、采样频率上的差异,以及流量和压力信号故障时表现出的不同特点,将多个压力和流量传感器信号分别输入卷积核大小不同的一维多通道卷积神经网络,并利用有效通道注意力调整特征通道权重,在全连接层进行特征融合,最终经Softmax层实现分类。结果表明:有效通道注意力能有效提高故障识别准确率,该方法与目前该领域先进的研究方法相比有更好的故障诊断性能;蓄能器故障诊断精度可达99.52%,液压泵故障诊断精度可达99.88%。同时,该方法解决了因非同源传感器数量和采样频率差异而带来的故障难以准确识别的问题。