关键词:
挖掘机
液压系统
故障诊断
预测模型
专家系统
摘要:
挖掘机液压系统在故障发生时具有隐蔽性强、非线性时变信号强、能量传递机理复杂等特点,尤其大多数故障的故障特征在前期表现较弱不易提取,若不能及时发现并解决故障,极易引发重大安全生产事故。因此对于挖掘机液压系统来讲,能够对其实现快速准确的诊断具有很大的研究意义。为了解决上述问题,作者根据本课题的研究方向,依托于校企合作项目“FW080全液压履带式挖掘机开发”(项目号FW/RD201717),通过查阅大量国内外文献资料对挖掘机液压系统故障诊断技术进行了重点研究,分析了各种故障诊断技术的优缺点,对挖掘机液压系统各个回路中主要液压元件常见故障进行了总结,总结其故障发生时往往会导致其运行参数发生非正常变化,因此从运行参数的变化中能够提取有效的故障信息,从而提出了本文的故障诊断研究方案:将智能算法回归拟合预测思想应用于挖掘机液压系统的诊断之中,并与专家系统相结合的故障诊断方案。提出了基于极限学习机算法(ELM)回归拟合预测模型的诊断方法:首先根据正常状态下挖掘机液压系统的运行参数建立拟合预测模型,故障发生时,将故障状态的运行参数输入到所建立的预测模型中,得到预测模型输出的各个参数正常状态的预测值并于实际运行参数进行对比,通过对比二者残差统计量判别系统是否发生故障。为了进一步对预测模型输出残差统计量进行推理及解释,引入了专家系统诊断方法:首先将液压挖掘机液压系统目前的诊断推理流程、故障特征信息以及故障维修方案等知识以本体模型的形式构建了挖掘机液压系统故障诊断的专家系统知识库以及基于残差统计量的推理规则库,通过设置推理规则对故障进行推理解释;同时为实现将以往故障诊断知识的重复利用,提出了基于案例匹配的诊断方法,通过分析不同故障原因引发的不同参数变化及故障现象,将故障回路、故障现象及故障参数以案例特征信息的形式储存,构建故障诊断的案例库,通过特征选取、案例检索、案例匹配实现对故障快速确诊。并基于Visual Studio软件设计了一套实现上述的功能的系统,让用户及时知道挖掘机的故障部位、故障原因以及故障维修方法。在AMEsim系统仿真环境下,建立了实验样机液压系统的仿真模型,通过改变其液压元件物理参数,模拟多种故障实例,获得相应故障数据用以验证本文所提出挖掘机液压系统诊断方法的有效性,结果表明本文所述方案是合理有效的,同时本文所述方案也为其他工程车辆故障的诊断提供了一定的参考。