关键词:
重型数控机床
液压系统
油液污染
可靠性分析
可靠性建模
可靠性设计
摘要:
数控机床作为具有高科技含量的“工作母机”,是装备制造业的基石。其中,重型数控机床(下文称重型机床)是多系统构建、多技术集成的机电液一体化的高端制造装备,其技术水平、产品质量是国民经济的重要支撑和国防安全的强力保障。然而,国产重型机床暴露出严重的可靠性问题,严重影响了其市场占有率,对国家战略具有一定的潜在隐患。为了承受大载荷,重型机床普遍采用静压支撑和液压驱动,配置有复杂的液压系统,现场故障数据表明重型机床液压系统故障占比及造成的经济损失巨大,且有很大比例是由油液中的固态颗粒污染物引起的。面向油液污染研究重型机床的可靠性对提升重型机床可靠性具有重要的理论意义和应用价值。机床可靠性问题是我国机械工业跨越式发展重视功能不重视可靠性导致的历史遗留问题,因行业内可靠性人才缺乏、现有的机械可靠性技术不能照搬照用、研究人员因重型机床样本匮乏而望而却步等原因,重型机床可靠性工作举步维艰,油液污染与重型机床可靠性的关系更是因处于研究边缘而少有涉足。而明确两者关系可为重型机床设计优化、状态监测、故障预警、故障诊断提供重要参考。为此,本文以重型卧式车床和重型龙门镗铣床为研究对象,面向其油液污染开展了重型机床液压系统的可靠性研究。论文主要研究内容如下:(1)基于重型机床可靠性研究基础较缺乏的状况,首先论证了液压系统确为重型机床可靠性的薄弱环节。针对仅以故障率评定子系统薄弱程度的片面性及以FMECA判断薄弱环节时未考虑产品使用过程中的维修成本、维修时间信息的不足,划分了重型机床子系统;制定了科学的故障数据采集规范并采集了不同厂家生产、不同环境下工作的55台重型机床的故障数据;依据数据对各子系统进行了FMECA及维修费用、维修时间统计分析,并整合为FMECA信息。综合考虑信息中各项指标的主观权重、相关性权重、信息量权重,对指标进行了筛选;利用认知最优最劣方法给出了信息权重;用逼近理想点排序法对加权的FMECA信息排序,实现了子系统可靠性薄弱程度排序。结果表明,液压系统是所研究的重型机床可靠性最薄弱的环节。(2)进一步采用D-S证据理论及区间粗糙数论证了油液污染确为重型机床液压系统故障的主要原因。深入分析了液压系统故障数据,归纳出重型机床液压系统的故障模式,并建立了故障树,应用布尔运算划分出最小割集;选择底事件概率重要度为故障原因的评价指标;考虑到底事件概率无法获得,定义由底事件“主观发生度”和“客观发生度”融合成的“综合发生度”为替代参与重要度计算。在计算“客观发生度”时,对已知故障原因的故障数据统计其故障原因频率,对未知故障原因的故障数据则通过D-S证据理论计算其故障原因信任不确定区间,并将二者叠加;在计算“主观发生度”时,设计人员、维修人员、使用人员对故障数据中未出现的故障原因的可能发生程度进行区间粗糙数评分,并计算评分的期望值。用基于布尔矩阵的区间数排序方法对底事件重要度进行了排序。结果表明,油液污染是重要度最高的故障原因。(3)为了建立油液污染与重型机床可靠性的定量关系,进行了油液污染趋势变化分析试验、油液污染与环境相关性分析试验、故障部位油液污染检测试验。通过对油样测试数据的时域分析,获得了油样颗粒数有量纲参数和无量纲参数;通过Q-Q图和K-S检验分析趋势变化分析试验数据的有量纲参数,获知污染颗粒数是退化量服从正态分布的退化数据;通过相关系数法分析环境相关性分析试验数据的无量纲参数与环境因素的关系,获知油液污染颗粒数变化量与一定范围内的温度、流量、压力相关性小。将液压元件分为管路、阀、过滤器三类,用5μm左右的颗粒研究管路、阀件的堵塞,以大于15μm的颗粒研究管路、阀件的磨损,以过滤器过滤精度大小的颗粒研究过滤器的堵塞,设定ISO4406标准20/17级对应的颗粒数为阈值,分别基于退化轨迹、退化量分布建立了各类元件针对单一故障模式的可靠性模型;考虑到实际中阈值并非定值,采用应力强度干涉模型再次建模;其中,强度函数通过故障部位油液污染测试试验数据的折算得到,折算时,对管路、阀件采用了相似比较法,过滤器借鉴了颗粒尺寸分布函数;最后,利用竞争失效模型将各元件单一故障模式下的可靠性模型融合为多故障模式下的可靠性模型。所建立的3个可靠性模型反映了油液污染与重型机床可靠性的定量关系。(4)为了将建立的模型应用于液压系统的可靠性增长中,提出了一种针对液压系统可靠性的概念设计。以重型机床液压系统的某一支路为研究对象,建立了油液污染控制模型,利用最小二乘法和极大似然法估计了模型参数,并对其进行了检验。结合液压元件可靠性模型和油液污染控制模型,建立了液压系统全局可靠性模型。分析了液压系统设计需要考虑的尺寸结构、维护费用、油液压力;建立了以单位时间维护费用最小为目标函数,尺寸结构范围、系统MTBF、油液压力为约束条件,尺寸结构、换油周期为优化变量的液压系统优化设计模