关键词:
仿生功能微结构
激光加工
不锈钢
超疏水
陷光性
生物相容性
摘要:
受自然界中生物体表面特殊功能和性能的启发,研究生物表面的微纳结构,并在人工材料表面进行仿生功能微结构的制备与性能研究是仿生学的研究热点之一。开展其研究,在工业、航空航天、军事、医疗和日常生活等领域具有重要的理论研究价值与广阔的应用前景。
本文利用飞秒激光器和纳秒激光器,构造了仿生微结构表面制备实验系统,制备了一系列仿生金属微纳结构表面,对这些微纳结构表面开展了表面形成机理、表面润湿性能、表面陷光性能和表面生物相容性的研究,以期实现对仿生功能微纳结构制备和应用的指导。本文的主要研究内容和结论如下:
1.构造了飞秒激光仿生微结构表面制备实验系统,在高真空环境下对不锈钢表面进行了飞秒激光微结构的制备与研究,考察了单脉冲和多脉冲激光作用下表面微结构的形成机理,并进行了大面积多尺度微纳结构的制备,在此基础上,确定了激光作用参数对表面形貌的影响规律。实验结果表明,单脉冲激光实现的烧蚀直径决定于材料的单脉冲能量阈值和所用激光的单脉冲能量,而多脉冲激光作用下形成特定微结构的能量阈值随着脉冲次数的增加而减小;激光能量密度较低时获得了典型的亚微米级激光诱导周期性表面结构(LIPSS),随激光能量密度的增强,依次形成微米级波纹和锥形钉,表面覆盖着LIPSS结构,从而组成了微米-亚微米级双尺度结构;对比扫描路径的起点和终点部位的微结构,证明高能量密度只能形成微米级粗糙结构而不能形成LIPSS结构。通过对激光作用参数进行调整可实现多种多尺度微纳结构表面,为仿生功能结构表面提供丰富的选择。
2.基于润湿性能的几何分析方法,建立了多尺度微结构对润湿性能的影响模型。对经硅烷化处理后的飞秒激光微结构化不锈钢表面的润湿性能进行了检测,发现随着激光能量密度的增加,所获得微结构表面的超疏水性提高,尤其是在高能量密度激光下获得的类似荷叶表面乳突状双尺度结构的表面具有极高的表观接触角和极小的滚动角。润湿实验结果与本文建立的多尺度结构对润湿性能的影响模型的预测吻合得较好,为多尺度微纳结构超疏水功能表面的构筑和调控提供指导。
3.提出了两次不同能量密度飞秒激光大面积交叉扫描的方法,在不锈钢表面获得了微米级锥状钉结合亚微米级颗粒的多尺度陷光结构;微结构表面对波长范围200-900nm的光波具有很好的吸收增强效果,XRD分析结果表明,不锈钢表面强陷光效果的原因是表面的微结构,而不是化学成分的改变;建立了多尺度微结构表面的陷光模型,并基于该模型分析了微结构的陷光机理。构造了纳秒激光微结构表面制备实验系统;在不锈钢表面进行了多脉冲微孔结构制备与光反射率测试,并确定了激光参数对微孔结构以及陷光效果的影响规律;优化设计了梅花型排列的微孔阵列陷光结构,实验结果表明其具有很好的陷光效果。金属基陷光微结构的制备与性能研究在光响应材料领域具有重要的研究价值和应用前景。
4.对飞秒激光微结构化后的不锈钢表面进行了血液相容性研究,通过体外血小板粘附实验、动态凝血实验和溶血实验来评价微结构化超疏水表面的血液相容性。实验结果表明,材料表面微结构可以显著抑制血小板的粘附数量和激活比例,延长动态凝血时间,降低溶血率。本文还从微结构表面超疏水性能的角度对材料表面血液相容性的改善机理进行了研究。
5.建立了表面微结构对细胞的接触导向模型,并采用了细胞培养实验对该模型进行了验证。实验结果表明:不锈钢表面的LIPSS结构具有明显的接触导向效果,细胞培养时间越长效果越明显,这与细胞接触导向模型的预测结果吻合得较好;另外发现微波纹结构还增加了细胞的粘附增殖速度。这种飞秒激光大面积扫描获得的微结构的周期远小于常见的细胞尺寸,可以用于实现各种细胞的运动控制和粘附增殖,为多尺度结构仿生微结构表面在生物医用材料中的应用提供了理论指导。