关键词:
微机械
磁遥控驱动
溶剂响应驱动
飞秒激光微纳加工
摘要:
“微机械”的概念最早提出于上个世纪六十年代,以器件的特征尺寸或操控尺寸在微米量级为特征。直到八十年代,第一台静电驱动微马达被成功研制,微机械开始快速发展起来。迄今为止,其产品已经被广泛应用于生物医疗、环境监测、交通运输、自动化控制、航空航天和国防建设等领域。微机械的制备与驱动很大程度上依赖MEMS工艺,随着MEMS工艺的不断成熟,微米级,甚至纳米级微机械相继出现。然而,微机械尺寸的缩小为其驱动带来不便,传统的微机械驱动技术已显得有些力不从心。因此,开发一种新型微机械制备与驱动技术十分必要。近年来,聚合物微加工技术日趋成熟,这为微机械的制备提供了新的思路。本文在此背景下,提出利用飞秒激光双光子微纳加工这一强大的三维微加工平台,设计、制作了多种微机械,并着力研究、开发了微机械的磁力遥控驱动和溶剂响应驱动两种新型的驱动方式。
1.磁力驱动方面
磁力驱动是指利用磁场实现力或者力矩无接触传递的一种驱动方式,它具有非接触性和生物相容性等优点。磁力驱动的这些优点使其在生物医药领域显示出了广阔的应用前景。然而,对于聚合物微机械来说,磁性材料(如Fe304纳米粒子)由于存在兼容性差等问题很难大量掺入到聚合物之中。因此,磁驱动技术一直无法应用于聚合物微机械。在本论文中,我们介绍了一种利用飞秒激光加工磁流体光刻胶制备聚合物微机械的方法,并对其进行了磁遥控驱动。
实验上,我们首先利用高温分解法制备出粒径均一、分散性好的Fe304磁性纳米粒子,粒子的粒径约为6nm。经过对纳米粒子进行表面改性处理,将PO3-TMPTA材料修饰在粒子表面,从而改变了纳米粒子在有机溶剂中的分散性质。实验结果表明:原本只能均匀分散在非极性溶剂中的纳米粒子,经过表面改性处理后能够长期均匀、稳定的分散在MA等极性溶剂中。将改性后的Fe304纳米粒子溶解到BMA中,与P03-TMPTA、TPO、Irgacure 819按照一定比例混合,配制成磁性光刻胶。由于纳米粒子的性能得到了改善,大大提高了微机械的加工精度。与含有共沉淀法合成的粒子的微结构27.5nm的表面粗糙度相比,含有改性后高温分解法合成的粒子的结构表面粗糙度仅为4.9nm。
利用飞秒激光对该磁性光刻胶进行双光子微纳加工,制作了微弹簧结构,在磁场中对其进行了拉伸驱动。实验结果表明,弹簧结构能够敏感的对外界磁场做出响应。在磁场强度3000Gs的条件下,其形变量能够达到81μm,是其自由状态下自身长度的2.25倍,可谓驱动效果明显。
随后,作者又设计、加工了结构更为复杂,功能性更强的微涡轮结构,并对其在磁场中的运动做了研究。实验结果表明:通过与含有共沉淀法合成的纳米粒子的涡轮相比,含有高温分解法合成的纳米粒子的涡轮表面更加光滑,运动时受到的阻力更小。因此,该涡轮旋转的稳定性和转速均明显优于前者。实验测得,含有高温分解法合成的纳米粒子的涡轮在旋转磁场中最高转速超过400r/min。
通过飞秒激光倒置加工技术,作者成功的将磁性微涡轮生长在微流控通道内,将其作为一种高效的主动混合器件,有望解决微观领域内溶液混合困难的问题。
2.溶剂响应驱动方面
刺激性聚合物的响应特性为聚合物微机械的驱动提供了可行性,然而,这些具有响应性的聚合物通常与器件的制备工艺不兼容。而常规的光敏聚合物虽然可对其进行高精度微纳加工,却没有明显的响应特性。在这种器件的制备与响应特性的矛盾中,我们提出利用调控实验参数以设计器件响应特性的方法,实现了对普通光敏聚合物微结构的溶剂响应驱动。
众所周知,交联的高分子聚合物材料在有机溶剂中能够发生不同程度的溶胀/收缩现象。从这一现象出发,本文研究了丙烯酸酯类光敏树脂和PDMS的宏观块体以及微观结构对不同溶剂的溶胀、收缩行为,发现激光加工出的聚合物微纳米结构有着非常明显的溶剂响应性质。
以丙烯酸酯类光敏树脂为例,聚合物微结构在溶度参数与其相近的溶液中溶胀,而在溶度参数与其相差较大的溶剂中收缩。我们首先利用飞秒激光双光子微纳加工制作了微米线结构,并对其进行了溶剂响应的可靠性测试。实验结果显示:微米线在连续溶胀/收缩50次以后形变量仍然保持在17%左右,与初始时相当,具有非常高的可靠性,完全满足作为微机械驱动力的需要。
作为溶剂响应驱动的展示,作者设计、加工了基于微米线收缩驱动的滑块结构。该滑块能够在正己烷的刺激下,沿着轨道向前滑行。通过调节微米线的激光扫描步长,作者有效的调控了聚合物的密度,也就调控了结构对溶剂刺激的敏感度,进而实现了对滑块结构的可控驱动。这部分还对滑块移动的距离和微米线的直径与激光扫描步长的依赖关系做了定性分析。实验结果显示:滑块移动的距离随激光扫描步长增加而增加,而微米线的直径随激光扫描步长增加而减少。
在此基础上,