关键词:
不相容流体
两层流体系统
电动流动
磁场
流向势
能量转化效率
摘要:
近年来,随着微纳电子科技的发展,微米和纳米量级的小型装置越来越受到人们的关注,主要是由于它在微机电系统、生物与化学传感器、药物传输芯片、溶剂分离装置以及热控制系统等方面有诸多的应用.在微纳流体装置中,相比于传统的单层流体系统,两层或多层流体系统是指包含两种或多种不相容流体的流动控制装置,其在生物、医药、化学等多学科领域有广泛的应用.基于这种两层或多层流体系统,流动转换装置如T-型传感器?和H-型过滤器?等流体装置已经被设计并且广泛地应用于分析两层或多层流体系统中的流动和传热问题.不同的流体驱动机制下,流体的运动状态有很大差别,尤其是在分析微纳尺度装置中流体的流动和传热问题,此差别更为明显.基于这一现状,本文将围绕压力、电场及磁场混合驱动机制下,对微纳流体装置中两层流体系统的流动、传热以及能量转化等问题展开研究,探索电磁场作用下微流体的电动流动现象,深入了解电磁场、流场和温度场等多场耦合机理和规律,揭示外加垂向磁场对减小电渗流中焦耳热效应的影响机理;通过理论分析,给出两层流体系统相比于单层流体系统在降低焦耳热效应以及提高能量转化效率上的优势.具体问题包含以下三个方面:(1)两层流动系统中磁流体电渗流的流动及传热研究.我们首先研究了平行微管道间,两层磁流体电渗流的流动及传热问题.两层流动系统中的流体均为互不相容的牛顿流体并且流体的流动由压力、电渗力及电磁力混合驱动.基于线性的Debye-Hückel假设以及热完全发展的流动条件,我们得到了两层流体速度和温(2)度分布的解析表达式.结果显示,我们可以通过改变不同的流体物理参数比率,如介电常数比,粘性系数比等控制不同流体层的流动速度进而控制两层流体的流率.(3)具有非导电粘弹性流体层的两层流体的流动和传热研究.我们开展了两层拖拽流体系统中的流动和传热研究.底层流体为受外加磁场影响的电解质溶液,上层流体为不导电粘弹性Phan-Thien-Tanner(PTT)流体.在电场和磁场的共同作用下,由于界面剪切应力的作用,上层非导电PTT流体会被底层流体拖拽,从而发生定向移动.首先,我们得到了单向流动假设下底层和上层流体的解析速度表达式.底层流体速度分布呈现典型的M型速度剖面.上层流体流动可以看作是平板Couette流动或平板Couette-Poiseuille流动.基于获得的速度分布,我们进一步开展了两层流体拖拽系统的热传输特性和熵产分析.结果表明,磁场可以提高局部熵产率,而粘弹性物理参数可以抑制局部熵产率.通过控制电场、磁场强度和流体流变特性的比值,我们可以有效地控制流体的运动和传热特性.(4)为了深入研究纳米流体器件中电动能量转换问题,我们从理论上开展了纳米通道内两种不相容流体在纯压力驱动机制下流向势的相关研究.在界面电势差、界面电荷密度跳跃以及Debye-Hückel线性化假设的前提下,我们首先得到了两层微流体系统中的解析电势分布,进而推导了流向势场和流速场的解析表达式.在得到流向势的基础上,我们给出了两层流体系统中解析的电动能量转换效率,并讨论了相关物理参数对其的影响.理论结果表明,流向势可以作为评估电动能量转换效率的依据.流体粘性比和界面滑移长度可以提高电动能量转换效率,但是介电常数比和离子摩擦系数对电动能量转换效率有抑制作用.与传统的单层流体系统相比,我们可以通过选择合适的流动参数来提高两层流体系统中的电动能量转换效率.