摘要:
Electrokinetics involves the study of liquid or particle motion under the action of an electric field; it includes electroosmosis, electrophoresis, dielectrophoresis, and electrowetting, etc. The applications of electrokinetics in the development of microfluidic devices have been widely attractive in the past decade. Electrokinetic devices generally require no external mechanical moving parts and can be made portable by replacing the power supply by small battery. Therefore, electrokinetic based microfluidic systems can serve as a viable tool in creating a lab-on-a-chip (LOC) for use in biological and chemical assays. Here we present our works of electrokenitic based mixing and separation in microfluidics systems. Firstly, we present a novel fast micromixer of quasi T-channel with electrically conductive sidewalls and some newly observed phenomena on mixing process. The sidewalls of the microchannel can be either parallel or non-parallel with an angle. The mixing behaviors in the micromixer with different angles between the two electrodes located at the sidewalls are studied in terms of velocity and scalar concentration distributions. It is found that mixing can be enhanced rapidly at a small angle about 5 between the two electrode sidewalls even at low AC voltage, compared with that in parallel sidewalls. The effectiveness of several parameters were explored for the further enhancement of the fluid mixing, including conductivity gradient, AC electric flied frequency, applied voltage, AC signal phase shift between the electrodes, etc. The results reveal that the mixing is the stronger under high conductivity gradient, low frequency, high voltage and 180 signal phase shift between the two electrodes. Fast mixing under high AC frequency can be achieved in this quasi T-channel micromixer as well. The most important observation is that for the first time turbulence can be achieved under AC electrokinetic forcing at low Reynolds number in the order of 1 in this novel des