关键词:
高速列车
滚滑接触
瞬态接触解
驱动系数
短波波磨
轨面塌陷
速度相关的摩擦模型
摘要:
该研究建立了三维瞬态滚动接触有限元模型,用于求解速度高至500 km/h的轮轨瞬态滚动接触行为。该模型考虑了轮轨的真实几何形状,可引入任意接触面不平顺、黏着系数(或摩擦系数)沿钢轨纵向的波动及相对滑移速度对黏着系数的影响,并可考虑材料的非线性行为。不同的切向接触载荷,即不同运动状态下的车轮所承受的驱动或制动力,由施加于车轴的随时间变化的扭矩来控制。模型采用显式有限元方法,其条件稳定特性决定了计算时间步长需取值极小,这使得该模型适合于时域内求解轮轨高速滚动过程中的高频动态或瞬态现象,如分析轮轨接触表面短波长缺陷处(钢轨焊接接头、波浪形磨损和车轮扁疤等)的轮轨瞬态冲击响应。另外,模型中充分考虑了车辆转向架和轨道子系统的主要部件,数值重现了三维轮对的真实滚动行为,因此车辆—轨道的耦合作用、与高速滚动相关的自旋、陀螺仪效应等因素均包含于模型之中。过去一年多,应用上述三维高速瞬态滚动接触有限元模型进行了一系列研究。不同速度的模拟结果发现,500 km/h以下速度对光滑接触表面上压力分布的影响可以忽略,而相应的应变率随速度增加而增加。针对很多国家出现的钢轨表面塌陷现象,即钢轨接触带内出现的具有两瓣特征且第二瓣更大的局部滚动接触疲劳损伤,也进行模拟研究,结果显示其发生应该与轨下胶垫的刚度有很大关系。车轮滚过钢轨短波波磨的瞬态接触结果显示,轮轨接触力在波磨段呈现出明显的波动,且当波深足够深时,接触状态会在滚滑—滑动—滚滑间反复震荡,从而导致V-M应力与摩擦功的波动。跟传统的基于多体动力学的车辆—轨道耦合动力学结果相比,发现传统模型夸大了轮轨间的接触刚度。另外,随相对滑动速度变化的摩擦力模型被发现对轮轨间的切向滚动接触具有重要的影响。