关键词:
中空Sb@C纳米管
医用锂离子电池负极
HPCMs
树枝Sb纳米晶体
稳定性
生物相容性
摘要:
锂离子电池(LIBs)被广泛应用于各种便携式电子医疗设备和大型医疗器械等仪器,是一种清洁、高效、绿色的新一代储能器件。作为锂离子电池的重要组成部分,负极材料对整体电池的性能发挥至关重要。目前,商业化的医用锂离子电池石墨负极由于较低的理论比容量(372 m Ah g-1)和嵌锂电位(0.1 V),在能量密度、功率密度、循环寿命和安全性等方面已经不能满足日常医用电子产品以及大型医疗器械等产业的快速发展,因此,寻找低成本,高容量,高安全性和长循环寿命的负极材料已经刻不容缓。本文以应用于小型医用电子产品的扣式电池负极材料为研究重点。生物质材料具有天然微观结构并富含碳元素,由生物质衍生的碳材料及其复合材料等已经被广泛应用于各种储能器件,这些生物材料衍生结构成本低,环保性优异,缺点是容量较低。因此,通过调控生物质碳材料形貌、结构及及其与高容量活性材料组合,对推动生物质碳材料向着低成本和高电化学性能的发展有着重要的意义。在众多的金属材料中,锑(Sb)由于具有高比容量(660 m Ah g-1)被认为是一种很有应用潜力的负极材料,但存在Li+在充放电过程中的反复脱嵌所产生的体积膨胀问题,造成电极材料粉化及结构破坏,最终导致电池失效。针对上述问题,本文将锑与生物质碳进行复合,该锑-碳复合材料可结合生物质碳与锑的优势,并利用生物质碳解决锑负极不稳定问题。设计了中空多孔碳微米球(HPCMs)、树枝状Sb纳米晶以及Sb@C复合纳米管,利用中空结构、树枝结构间隙及纳米尺寸小的结构缓冲在充放电过程中引起的体积膨胀和循环应力作用,利用包碳技术以增加生物相容性和分子化学惰性进而提高负极材料在医用纽扣锂离子电池中的结构、循环稳定性以及安全性。(1)采用富含碳元素且成本较低、易于培养的酵母细胞作为生物碳模板,利用高温碳化得到具有中空多孔结构的碳微米球(HPCMs)。通过将电极材料设计成具有均匀力学特性的微米球状结构,可以有效缓冲负极材料在充放电过程中的体积膨胀,防止锂化时由体积变化引起的各向异性对电极造成的结构破坏,提高电极稳定性。锂离子半电池测试结果表明,HPCMs-600负极材料在2 A g-1的大电流密度下经过500圈循环后,可逆容量仍保持有220 m Ah g-1,且循环过程中可逆容量衰减很小(平均每次循环容量衰减0.9%),显示出良好的循环性能,这为具有环保和低成本碳材料的开发提供了有力的参考。(2)通过锌粉还原三氯化锑制备纳米枝晶Sb,相结构为菱形结构,整个树枝状结构尺寸为300-700 nm,单个树枝尺寸约为50-100 nm。枝状结构以及枝杈交叉均形成更多孔状空隙,可以缓解Sb纳米晶在脱嵌锂过程中的结构膨胀,从而提高电极的稳定性。将树枝状Sb纳米晶作为负极材料组装锂离子半电池。结果表明,在电流密度为0.1 A g-1、和0.5 A g-1循环100次后,可逆比容量分别为517.4 m Ah g-1和306.8 m Ah g-1。经过不同电流密度循环回到初始电流密度后,容量恢复率为93%,表明树枝状Sb纳米晶具有好的倍率性能,这归因于Sb纳米晶的树枝结构不仅有利于离子的快速传输,同时树枝间隙可为锑锂合金化体积变化提供缓冲空间。以LiNiCoMnO2为正极活性材料,组装了医用扣式锂离子全电池,可使小型医用体温计工作。(3)通过生物分子辅助溶剂热合成法,在不同温度和反应时间下以生物分子L-胱氨酸作为硫源与Sb Cl3在DMF溶剂中水热还原合成Sb2S3纳米棒,并探讨了温度和时间对纳米棒形貌、结构和电化学性能的影响。结果表明,在反应条件为170℃,12 h下合成的Sb2S3纳米棒在形貌最好,纳米棒长约为3-6μm,平均直径约为150 nm,结构为正交相,锂离子半电池数据表明,不同条件下制备的Sb2S3纳米棒作为容量和循环稳定性均较低。在此基础上,对纳米棒进行煅烧和利用聚多巴胺包碳,成功获得Sb@C纳米管,管体的尺寸范围为160-240 nm,外壁为20-40 nm的多孔碳层。并以Sb@C复合纳米管为负极材料组装锂离子半电池和全电池,结果表明,Sb@C作为负极的锂离子电池展现了优异的循环稳定性和高倍率性能,在100 m A g-1的电流密度下循环100圈之后依然保持675.9 m Ah g-1,当电流密度为500 m A g-1,循环100圈之后下仍有546.6 m Ah g-1的可逆容量,展现了优异的循环稳定性和高倍率性能,这归因于外层多空碳层对体积膨胀的缓冲作用。以Sb@C纳米管作为负极活性材料,LiNiCoMnO2为正极活性材料组装了医用扣式锂离子全电池,可使小型医用体温计工作。(4)对Sb@C//LiNiCoMnO2组装的医用扣式锂离子全电池进行生物相容性研究。得出实验组共培养48 h和72 h后,通过酶标仪测试吸光度,扫描电镜观察细胞形态以及荧光