关键词:
单总线通信协议
电压参考源
低压差线性稳压器
电荷泵
低电压
低功耗
摘要:
在单总线通信协议下,主机和从机之间只用一条线进行通信,这根线既要充当信号线,又要充当电源线。在通信状态时,这根线不能一直为高电平,在有的时间段内会被切换到低电平,该时间段内芯片内部电路没有供电输入,只能由存储在电源电容上的电荷给电路供电,这样,对于内部电路来说,其输入电源就会发生掉电。信号线保持下拉的时间越长、内部电路功耗越大,电源电压将掉电越多。当电源电压值过小时,其所驱动的电路性能将变差,有的甚至无法工作,这就需要芯片内部电路模块采用低压低功耗设计,以保证电路即使在输入电源掉电情况下也能够正常工作。论文针对单总线通信协议下的打印机耗材芯片,就其内部三个常见的与电源管理相关的电路模块:电压参考源(Vref)、无大电容低压差线性稳压器(LDO)、用于FLASH或EEPROM浮栅管擦写所需的高压电荷泵(Pump),提出了在2V~3.3V变化的电源供电下,也能正常工作的低功耗设计方法,具有较强的实用价值。电压参考源的设计选用电流模求和的带隙基准电压参考源结构,输入电压限为1.3V,小于最低输入电压2V;运放电路采用无偏置电路的单级运算放大器,减少了电路的支流条数,降低了电路的功耗。LDO采用PMOS型功率管架构,保证了电路在2V的低输入电压下也能实现1.5V的稳压输出;运放电路同样采用无偏置电路的单级运算放大器,并采用简单的密勒电容补偿法保证环路的稳定,减少了电路的总支流条数,使电路的功耗得到降低。电荷泵采用基于Dickson电荷泵架构下的优化CTS结构,消除了二极管在每级的阈值压损,提高了升压效率;级数采用2V输入电压下的最低功耗级数设计,保证低输入电压时也能有18V的高电位输出;并采用控制时钟驱动电路的开启与关断进行稳压,减少了时钟驱动电路的功耗。实现了三个模块各自的低压低功耗设计。论文采用Cadence Spectre仿真器,基于华虹宏力HHgrace 0.13um 3.3V FLASH工艺模型(tt),对电路进行仿真。电压参考源,温漂系数为10ppm/℃,低频电源抑制比51.5d B,静态电流7.5μA,和传统的结构相比,静态降低约28%。LDO输出电压1.5V,低频电源抑制比83d B,负载电流在10μS内跳变5m A的情况下,瞬态响应良好,静态电流11μA,与传统架构相比,降低约21%。电荷泵输出电压18V,在2V最低输入电压下,驱动负载电流为2μA时,建立时间57μS,纹波电压小于400m V。