关键词:
神经网络
粉碎机
自适应控制
稳定性分析
Simulink仿真
摘要:
针对饲料加工行业中锤片式粉碎机控制系统存在启动时间长、响应速度慢及负载变化时出现的稳定性差等问题,提出了一种基于BP神经网络算法PID控制方法。首先,建立变频器和饲料粉碎机驱动电机组合系统传递函数的参考模型,并对其进行稳定性分析。然后在分析常规PID和模糊PID控制算法的基础上,将自适应神经网络算法PID应用到饲料粉碎机驱动系统的控制过程当中。通过搭建饲料粉碎机控制电机的仿真模型,利用MATLAB软件中的Simulink图形化编程功能对其进行仿真分析,并基于LABVIEW软件搭建了粉碎机测控系统试验平台进行实验测试分析。结果表明:对于饲料粉碎系统所给定的速度参考模型,设计的BP神经网络PID控制器能够实现较好的自适应追踪,对阶跃信号的响应更加迅速、超调更小,抗干扰能力更强。设计的自适应控制器能够根据工况变化自动调节PID参数,吨料电耗平均降低5.16%、生产率平均提高2.08%,对粉碎机主轴转速的控制更加精确,误差更小,兼具了较高的控制精度和较强的鲁棒性,满足饲料粉碎机驱动系统的自适应控制要求。