关键词:
网络攻击
编队控制
弹性容侵控制
滑模控制
自适应控制
摘要:
为满足远洋深海高效作业需求,以应对日益猖獗的网络安全威胁,性能卓越且具有安全策略支撑的网络编队控制系统已成为海洋工程智能作业中必不可少的关键环节,让智能船-水下机器人设备高效高质的完成编队协同任务成为现实。基于此,本文对易隐匿、低成本和强破坏性的欺骗攻击篡改系统输入造成控制失稳问题的内在关系进行剖析。同时,进一步深挖执行器故障与网络攻击造成的复合型输入异常的内在耦合特质,再对不同类型不同内因影响编队控制效果的随机扰动进行解析。最终,本文聚焦网络攻击事后阶段,从控制角度设计编队弹性控制系统解决相关问题,为海工设备编队作业提供安全有效的控制策略参考。本文以网络攻击对编队控制器输出指令造成的不同程度破坏影响为研究主线,并在此基础上,进一步考虑智能船-水下机器人的编队方案设计、设备故障与随机运动等实际工程问题,由此开展如下研究:首先,利用图论法构建智能船和水下机器人的编队系统通信拓补网络,设计交换机来实现混合通信下的传输分配调节。同时,进一步解析编队设备间的几何关系与运动特征,通过几何变换法建立编队位置几何约束关系,将编队控制问题转换为运动跟踪控制问题。依据海工作业集中管控需求,采用领导-跟随者集中式控制策略,以虚拟引导思想,将期望任务轨迹设计为最高级别虚拟领导者,并把异构模型建立为矩阵型编队状态空间方程,解决不同设备和状态不同阶的不易统一控制调节的问题,有利于多类型海工设备实现编队控制。然后,根据海洋工程的高效作业需求,进一步考虑设备内外因素造成的未知扰动,以及解决隐匿性欺骗攻击对编队控制指令的篡改破坏问题,控制系统需要具有更好的自适应弹性响应调节能力和鲁棒性能。因此,从滑模趋近阶段和滑动阶段入手,依据滑模控制动态特性,设计滑模阻尼器,由此构建变阻尼趋近律,实现大误差快速趋近,小误差减速趋近的动态调控,减弱抖振的同时,提高滑模鲁棒响应;由此,构建可避免奇异问题的新型终端滑模面,实现在滑模面上有限时间收敛,从而以滑模鲁棒响应来应对突发攻击影响的同时,也可快速完成期望的编队任务。此外,结合考虑输入饱和特性的事件触发机制与自适应技术,完成变阻尼终端滑模控制器的设计。其次,针对海上和海下不同类型的风浪流扰动产生的随机干扰问题,以及设备内部由执行结构或通信转换产生的匹配性干扰问题,依据扰动的时间相关性,针对可积扰动设计自适应径向基(Radial Basis Function,RBF)神经网络逼近器,实现在线自适应补偿;进一步考虑到部分网络攻击、脐带缆和风浪流造成的部分不确定影响具有布朗运动特性,基于大系统观,将设备的随机现象定义为编队系统内外部随机激励产生的振动问题,利用广义力分析法建立驱动源随机力模型,并最终构建Stratonovich随机动力学模型,为控制器设计提供模型参考。最后,针对在耦合性欺骗攻击和失效故障同时作用下,系统输入受到复合型异常影响的问题,利用设备的饱和特性设计非线性饱和滤波机制,对控制器输出进行非线性拟合。随之利用拟合后的有界特性,设计解析标准量,并将其与系统输入映射到欧氏空间,利用欧氏距离法,建立弹性饱和解析机制,对耦合性输入异常进行解耦,并在控制器设计中利用RBF神经网络对解耦后的输入异常进行虚拟参数动态逼近,实现对输入异常的在线估计与补偿。本文对所提出的控制算法进行Lyapunov稳定性分析后,证明均可以在有限时间内完成有界一致性收敛。此外,针对相关创新点设计对比用控制算法,由此通过仿真对比验证出本文所提出的算法有效性和优越性。