关键词:
前馈补偿
卷积神经网络
燃煤炉
选煤重介分选
介质密度
摘要:
燃煤炉选煤重介分选过程中,采集到的煤泥浆含量、磁物质含量等数据可能存在误差,无法准确捕捉到煤炭的关键特征,导致重介分选过程无法克服意外扰动,控制只能采用反馈形式,控制效果较差。为此,提出基于卷积神经网络前馈补偿的选煤厂燃煤炉重介质分选智能控制技术。通过仪器实时采集选煤工艺介质中的煤泥浆含量、重介质密度和磁物质含量等分选参数。通过卷积神经网络模型识别评价煤泥滤饼含水比例,作为重介分选智能控制依据;基于历史数据和煤泥饼含水量数据,设计前馈补偿方法。通过补偿精煤灰分分选中的扰动,得到精煤灰分的分选模型,估算出合理的分选参数数值。将通过仪器采集的含量参数作为前馈输入特征,根据实时监测和估算出的分选参数数值,对输出期望数值进行动态调整。实验结果表明,方法对燃煤炉选煤重介分选过程智能控制效果好,煤泥含水量波动较小,能保证选煤效率和质量。