关键词:
小目标检测
YOLOv4算法
轻量级网络MobileNetV3
IF-EIoU Loss
MS COCO数据集
摘要:
针对目前主流算法对小目标检测存在计算量大与准确率较低的问题,本文以轻量级网络MobileNetV3代替YOLOv4中的主干网络,并将颈部网络中的一部分普通卷积用深度可分离卷积替代,同时针对小目标检测定义一个新的损失函数IF-EIoU Loss,由此构建了MDS-YOLO目标检测模型.该模型具有较高的检测速度,且针对小目标具有较好的检测性能.为了验证模型的有效性,分别在MS COCO数据集和Visdrone2019数据集上进行了实验.与 YOLOv4算法相比,在MS COCO数据集上,MDS-YOLO算法的平均检测精度提升了1.5个百分点,对于小目标的检测精度提升了3.3个百分点,检测速度也从31帧/s提升至36帧/s;在Visdrone2019数据集上,MDS-YOLO算法将平均检测精度从YOLOv4的14.9%提升至16.3%.实验结果表明,本文提出的MDS-YOLO算法能有效提升小目标检测精度.