关键词:
事件相机
目标检测
噪声标记
跨模态
联合优化
摘要:
事件相机具有高时间分辨率、高动态范围和低功耗等特性,通常被用于传统相机应用受限场景(高速度、强光、弱光等)下的目标检测任务中。然而由于事件相机的像素异步性,其输出的事件序列难以进行人工标注,为此现有方法通过RGB图像标记迁移得到事件序列标记。然而,迁移标记中存在大量噪声标记和事件序列中部分目标纹理模糊,导致难以取得理想的模型性能。为了解决此问题,提出了一种跨模态噪声过滤的事件相机目标检测算法。算法利用预训练后的事件相机检测器对开源RGB目标检测数据集进行筛选,得到对训练事件相机检测器最具价值的RGB图像和事件图像一起构成跨模态混合图像,帮助检测器更准确地识别、定位事件图像目标;为了缓解噪声标记对检测器性能的影响,设计了一种多阶段目标检测联合优化策略,单个阶段训练完成时,在全局标记中识别噪声标记,并对噪声标记进行修正后在下一阶段使用。实验结果表明,在1Mpx Detection Dataset上,与基准模型相比,跨模态噪声过滤的事件相机目标检测算法提供了8.35%的模型增益,远优于Co-teaching,O2U-net等噪声标签学习方法,具体地,跨模态混合图像训练、联合优化框架分别提供了6.44%,4.77%的模型增益。