关键词:
植物叶斑病
目标检测
YOLOv5网络模型
MobileNetv3
K-means++聚类算法
SCSE模块
摘要:
为了提高植物叶斑病的检测效率和精度,引入主流的目标检测模型YOLOv5对叶斑病进行检测。结果显示,模型在检测较小的叶斑病时精度不高,且模型权重体积较大,不利于在终端边缘设备上部署。为此,对YOLOv5模型进行改进。首先,采用经过SCSE模块修改的MobileNetv3轻量化网络结构替代原有的CSP-Darknet53主干网络,从而降低模型的参数量和计算复杂度;其次,使用K-means++聚类方法优化Anchors参数,使先验框更好地为目标检测模型提供信息,增强模型的性能和泛化能力,减少对标注数据的依赖;最后,在主干网络的最后一层引入ASPPF模块,提高模型在不同尺度上的检测性能。实验结果表明,与原YOLOv5s算法相比,改进方法在植物叶斑病检测任务中表现更优,精确率、召回率和mAP等指标分别提高了2%、2.7%和1.5%,模型大小降低了39.1%。通过优化YOLOv5模型,实现了对不同植物类型大小不一的叶斑病的高效检测,有效降低了模型的大小,并提高了模型的检测精度。