关键词:
年龄评估
计算机视觉
特征提取
CloFormer
有序回归
面部特征
摘要:
现有的年龄评估方法通常采用基于卷积神经网络(CNN)的有序回归,然而在预测相邻年龄时,CNN难以捕获全局特征表示,进而导致预测精度的下降。为了解决该问题,提出一种新的将改进的CloFormer模型与有序回归相结合的年龄评估方法。相较于传统的基于CNN的有序回归,CloFormer在捕捉图像特征时能够利用自注意力机制更好地捕捉图像中不同区域之间的关系,从而更好地学习相邻年龄之间的特征差异。首先,优化CloFormer模型;然后,将优化后的CloFormer模型与有序回归相结合,以便更好地利用年龄序列信息,实现更精准的年龄预测;接着,通过端到端优化训练改进后的CloFormer模型和有序回归模型,更好地学习面部特征和年龄序列的关系;最后,在多个公开数据集上对比实验。实验结果表明,所提方法在CACD、AFAD、UTKFace数据集上的均方根误差(RMSE)分别为7.36、4.62、8.28,与基于CNN的有序回归(OR-CNN)、秩一致性有序回归模型(CORAL)等现有年龄评估方法相比,在CACD数据集上分别减小了0.25、0.05,在AFAD数据集上分别减小了0.18、0.03,在UTKFace数据集上分别减小了0.97、0.53,可见所提方法取得了较好的年龄评估结果。