关键词:
智慧文旅
目标检测
注意力机制
轻量化网络
YOLOv8算法
摘要:
针对当前景区行人检测具有检测精度低、算法参数量大和现有公开数据集在小目标检测上存在限制等问题,创建TAPDataset行人检测数据集,弥补现有数据集在小目标检测方面的不足,并基于YOLOv8算法,构建一种检测精度高、硬件要求低的新模型YOLOv8-L。首先引入Depth Sep Conv轻量化卷积模块,降低模型的参数量和计算量。其次采用BiF orm er注意力机制和上采样算子CARAFE,加强模型对图像的语义理解和信息融合能力,提升模型的检测精度。最后增加一层小目标检测层来提取更多的浅层特征,从而有效地改善模型对小目标的检测性能。在TAPDataset、VOC 2007及TAP+VOC数据集上的实验结果表明,与YOLOv8相比,在FPS基本不变的情况下,在TAPDataset数据集上,模型的参数量减少了18.06%,mAP@0.5提高了5.51%,mAP@0.5∶0.95提高了6.03%;在VOC 2007数据集上,模型的参数量减少了13.6%,mAP@0.5提高了3.96%,mAP@0.5∶0.95提高了6.39%;在TAP+VOC数据集上,模型的参数量减少了14.02%,mAP@0.5提高了4.49%,mAP@0.5∶0.95提高了5.68%。改进算法具有更强的泛化性能,能够更好地适用于景区行人检测任务。