关键词:
数据融合
计算机视觉
光流法
逐次变分模态分解
互相关函数
摘要:
结构动态位移测量与精准估计对于结构安全运营和性态评估具有重要意义.基于计算机视觉的位移监测方法具有精度高、非接触式、成本低、设备安装简便等优点,在实际复杂工程环境中,设备难以架设,视觉测量方法较传统接触式位移监测方法具有明显的优势.图像分辨率和拍摄帧率等因素在一定程度上限制了视觉方法的使用.针对视觉位移测量技术高频振动识别精度低的问题,提出了一种基于视觉与加速度测量的结构动态位移重构方法,通过融合视觉低频与加速度高频振动响应信号,实现结构动态位移精准识别.首先,利用光流法从结构振动视频数据中提取结构位移响应,引入前后向误差与离群值过滤机制,提升特征点追踪精度,避免漂移问题.然后,利用逐次变分模态分解方法分别从视觉位移与加速度二次积分得到的位移信号中提取相应的本征模态函数(intrinsic mode function,IMF)分量.最后,基于互相关函数筛选机制,确定融合模态分量,融合基于视觉测量的低阶IMF与基于加速度测量的高阶IMF,重构结构位移响应.通过一个钢筋混凝土框架结构振动台试验,对提出的位移融合估计方法进行了试验验证.结果表明:与单一视觉测量方法相比,所提出的方法能够更为准确地估计结构动态位移,并且通过引入加速度测量中的动态位移分量,融合后的位移比基于视觉测量的结果具有更宽的频率范围.