关键词:
单目相机
激光雷达
三维目标检测
目标跟踪
轨迹预测
摘要:
实时、鲁棒的三维动态目标感知系统是自动驾驶技术的关键。提出了一种融合单目相机和激光雷达的三维目标检测流程,首先,在图像上使用卷积神经网络进行二维目标检测,根据几何投影关系生成锥形感兴趣区域(region of interest,ROI),在ROI内对点云进行聚类,并拟合三维外包矩形;然后,基于外观特征和匈牙利算法对三维目标进行帧间匹配,并提出了一种基于四元有限状态机的跟踪器管理模型;最后,设计了一种利用车道信息的轨迹预测模型,对车辆轨迹进行预测。实验结果表明,在目标检测阶段,所提算法的准确率和召回率分别达到了92.5%和86.7%。在仿真数据集上对轨迹预测算法进行测试,与现有算法相比,所提算法在直线、弧线和缓和曲线3种类型的车道上均有较小的均方根误差,且算法平均耗时约为25 ms,满足实时性要求。所提算法鲁棒、有效,在不同车道模型下均有较好的结果。