关键词:
小目标检测
交通标志识别
注意力机制
YOLOv5s
深度学习
摘要:
交通标志识别应用中待检测目标多为小目标,因其携带信息少、定位精度要求高、易被环境噪声淹没等特点成为当前交通标志检测的难点.针对小目标交通标志漏检、误检、检测准确率低等问题,本文设计了一种用于小目标检测的STDYOLOv5s(Small target detection YOLOv5s)模型.首先,通过增加上采样和Prediction输出层数获得了更丰富的位置信息,解决了YOLOv5s模型在处理小目标时信息不足的问题,增强了对图像的全局理解能力;其次,在每个C3模块之后添加CA(Coordinate attention)注意力机制并在每个输出层前添加Swin-T注意力机制模块,增加了网络对多层特征信息的捕捉,提高了小目标的检测性能;最后,充分利用SIoU惩罚函数同时考虑目标形状、空间关系的特点,更好地捕捉不同尺寸的目标在图像中的位置关系,提高目标位置的精确性.所提模型在TT100K数据集上进行了验证实验,实验结果表明本文方法不仅保持了YOLOv5s模型的轻量性和快速性,在精确率、召回率和平均精度三个指标上也有所提升,提高了小目标检测的精确性.