关键词:
海杂波
小目标检测
虚警可控
生成对抗网络
卷积神经网络
摘要:
针对传统基于统计理论的海面小目标检测方法在复杂海面环境中性能不高的问题,该文提出了一种改进的检测方法。首先通过分析海杂波和目标回波的特征,将检测问题转化为特征空间的分类任务。鉴于海面小目标样本数量有限,存在样本不平衡的问题,该文引入了一种基于梯度惩罚的沃瑟斯坦生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty,WGAN-GP)来增强目标数据,从而在数量上平衡目标样本与海杂波样本。同时,对原始WGAN-GP网络的损失函数进行了改进,引入相位损失以确保生成数据能够反映真实数据的相位信息。基于这些数据,进一步提取了生成目标和海杂波的高维特征,并将其送入卷积神经网络(Convolutional Neural Network,CNN)进行训练。为了应对高维特征空间中虚警概率难以控制的问题,对CNN算法进行了改进,通过设置Softmax分类器的阈值,实现了虚警概率可控。最后,借助公开的IPIX雷达数据集进行实验验证,所提的WGAN-GP-CNN检测器在积累时间为1.024 s,虚警概率为0.001时,平均检测概率达到0.8683,具有良好的检测效果。