关键词:
三维目标检测
自注意力机制
特征融合
动态图卷积
小目标检测
摘要:
针对三维(3D)目标检测过程中对骑行者、行人等小目标检测的准确性较低,难以适应城市复杂路况的问题,提出一种基于自注意力机制与图卷积的3D目标检测网络。首先,为获取更具有判别性的小目标特征,在主干网络中引入自注意力机制,使网络对小目标特征更敏感,增强网络特征的提取能力;其次,在自注意力机制的基础上构建特征融合模块,进一步丰富浅层网络特征,增强深层网络的特征表达能力;最后,引用动态图卷积预测目标的边界框,提高目标预测的准确性。在KITTI数据集上进行实验,将所提网络与TANet(Triple Attention Network)、IA-SSD(Instance-Aware Single-Stage Detector)等8种主流网络对比。实验结果表明,所提网络对行人的检测精度在简单、中等和困难这3个难度下比行人检测精度次优的TANet提高了12.12、13.82和11.03个百分点,对骑行者的检测精度在中等和困难上比IA-SSD提高了3.06和5.34个百分点。综上所述,所提网络可以更好地应用于小目标检测任务。