关键词:
小目标检测
递归门控卷积
解耦头
无人机图像
YOLOv5
摘要:
当前无人机图像中存在小目标数量众多、背景复杂的特点,目标检测中易造成漏检误检率较高的问题,针对这些问题,提出一种高阶深度可分离无人机图像小目标检测算法.首先,结合CSPNet结构与ConvMixer网络,深度可分离卷积核,获取梯度结合信息,并引入递归门控卷积C3模块,提升模型的高阶空间交互能力,增强网络对小目标的敏感度;其次,检测头采用两个头部进行解耦,分别输出特征图分类和位置信息,加快模型收敛速度;最后,使用边框损失函数EIoU,提高检测框精准度.在VisDrone2019数据集上的实验结果表明,该模型检测精度达到了35.1%,模型漏检率和误检率有明显下降,能够有效地应用于无人机图像小目标检测任务.在DOTA 1.0数据集和HRSID数据集上进行模型泛化能力测试,实验结果表明,该模型具有良好的鲁棒性.