关键词:
目标检测
铝材表面缺陷
YOLOv4
注意力机制
机器视觉
摘要:
针对铝材表面缺陷检测精度不高,容易漏检的问题,提出基于改进YOLOv4的缺陷检测方法。在CSPResblock模块中引入注意力机制SE模块,赋予各个通道相应的权重,加强网络对于重要信息的训练,提升网络的特征提取能力;改进SPP模块,使用不同宽高比的池化核,有利于保留更多的短边信息,提高网络对大宽高比缺陷的检测能力;对PANet结构进行改进,在对应特征层级上拼接输入信息,主要融合主干网络的三层输出,获得更多较浅的特征信息,提升对小目标的检测能力;实验结果表明,改进后的YOLOv4算法在铝材表面缺陷数据集上的精度(mAP)达79.27%,优于其他常见目标检测算法。