关键词:
目标检测
图像增强
LSKNet
空间和通道卷积模块
通用感知大内核卷积网络
摘要:
针对夜间环境光照度低、光照分布不均匀导致车辆检测细节模糊以及车辆漏检和错检等问题,提出一种改进YOLOv8n的夜间目标检测算法。首先,引入图像增强算法Zero-DCE提高图像质量,减小光照度低、光照分布不均匀的影响,同时使用LSKNet作为主干网络,调整动态感受野,改善模型特征提取能力,提高检测精度;其次,采用空间和通道卷积(SSConv)模块融合C2f模块,减少特征之间的空间和通道冗余;最后,提出通用感知大内核卷积网络(SPPF_UniRepLKNet)替换SPPF模块,使用非膨胀卷积更好地提升感受野,从而有效捕捉模型的特征,提高模型的检测精度。实验结果表明,改进YOLOv8n算法的检测精确率和平均精度均值分别提高了4.7%和4.9%,适用于夜间环境下车辆检测。