关键词:
目标检测
无人机
小目标
滤波
改进YOLOv8算法
注意力机制
摘要:
在无人机(UAV)目标检测任务中,存在因检测目标尺度小、检测图像背景复杂等原因导致的漏检、误检问题。针对上述问题,提出改进YOLOv8s的无人机图像目标检测算法。首先,针对无人机拍摄目标普遍为小目标的应用场景,减少算法骨干网络(Backbone)层数,增大待检测特征图尺寸,使得网络模型更专注于微小目标;其次,针对数据集普遍存在一定数量低质量示例影响训练效果的问题,引入Wise-Io U损失函数,增强数据集训练效果;再次,通过引入上下文增强模块,获得小目标在不同感受野下的特征信息,改善算法在复杂环境下对小目标的定位和分类效果;最后,设计空间-通道滤波模块,增强卷积过程中目标的特征信息,滤除无用的干扰信息,改善卷积过程中部分微小目标特征信息被淹没、丢失的现象。在Vis Drone2019数据集上的实验结果表明,该算法的平均检测精度(m AP@0.5)达到45.4%,相较于原始YOLOv8s算法提高7.3个百分点,参数量减少26.13%。在相同实验条件下,相比其他常见小目标检测算法,检测精度和检测速度也有一定提升。